FIN 316
 CH-1 compound interest
 Formulas

1- \quad Future value $=$ Present value $\mathrm{X}(1+i)^{n}$

2- Compound interest $=$ Future value - Present value
OR
Present value $\mathrm{X}\left[(1+i)^{n}-1\right]$

3- Present value $=$ Future value $\div(\mathbf{1}+\mathbf{i})^{n} \Rightarrow$ by knowing future value
Present value $=$ Compound Interest $\div\left[(1+\mathbf{i})^{n}-1\right] \quad \Rightarrow$ by knowing Compound Interest

4- Time / Periods (\mathbf{n}) = Future value \div Present value $\quad \Rightarrow$ Press $\log \quad$ by using calculator
5- interest rate (i) $=$ Future value \div Present value \Rightarrow Press $\sqrt[x]{ }$ by using calculator

Annual and Partial interest rate	
Annually	$i=\sqrt{ }$ $n=\sqrt{ }$

Compounded Semi Annually	$\mathbf{i}=\div 2$	$\mathrm{n}=\times 2$
Compounded Quarterly	$\mathbf{i}=\div 4$	$\mathrm{n}=\times 4$
Compounded Thirdly	$\mathbf{i}=\div 3$	$\mathrm{n}=\times 3$
Compounded Monthly	$\mathrm{i}=\div 12$	$\mathrm{n}=\times 12$

(Every 6 Month) (Semi Annually)	$\mathrm{i}=\div 2$	$\mathrm{n}=\times 2$
(Each Quarterly) (Every 3 Months)	$\mathrm{i}=\div 4$	$\mathrm{n}=\times 4$
(Each Thirdly) (Every 4 Months)	$\mathrm{i}=\div 3$	$\mathrm{n}=\times 3$

FIN 316

CH-2 - Annuity

Formulas

(Ordinary) (End) Annuities

1- Future value $=$ PMT $X\left[\frac{(1+i)^{n}-1}{i}\right] \Longrightarrow$ by using calculator

Future value = PMT X TABLE (FV of Ordinary Annuity)
2- \quad Present value $=\mathbf{P M T X}\left[\frac{1-(1+i)^{-n}}{i}\right] \Longrightarrow$ by using calculator

Present value $=$ PMT X TABLE (PV of Ordinary Annuity)

3- $\mathbf{P M T}=$ Future value $\div\left[\frac{(1+i)^{n}-\mathbf{1}}{i}\right]$
PMT $=$ Present value $\div\left[\frac{1-(1+i)^{-n}}{i}\right]$

(Due) (beginning) Annuities

1- Future value $=\operatorname{PMTX}\left[\frac{(1+i)^{n}-1}{i}\right] \times \quad(1+i) \quad \Longrightarrow$ by using calculator
Future value = PMT X TABLE (FV of Annuity Due)
2- Present value $=\operatorname{PMTX}\left[\frac{1-(1+i)^{-n}}{i}\right] \times(1+i) \quad \Longrightarrow$ by using calculator
Present value = PMT X TABLE (PV of Annuity Due)
3- $\operatorname{PMT}=$ Future value $\div\left[\frac{(1+i)^{n}-1}{i}\right] \div(1+i)$

$$
\text { PMT }=\text { Present value } \div\left[\frac{1-(1+i)^{-n}}{i}\right] \div(1+i)
$$

CH-3 - Capital Budgeting Decision Model

1- Payback period

$$
\text { Payback Period }=\frac{\text { cost }}{\text { Annual cash inflow }} \quad \text { (Fixed Cash Inflow) }
$$

(Changeable Cash Inflow)

Year	Cash flow	Yet to be recovered	Payback period

@We choose the project it has the lowest payback period

2- Net Present Value Method

Year	Cash flow	$(\mathbf{1 + i})^{\boldsymbol{n}}$	PV of cash flow

(If, NPV > 0 ... Accepting the project) (if, NPV < 0 ... Rejecting the project) @We choose the project the one with the highest positive net present value 3- Profitability Index $\quad=\frac{N P V+\text { Cost }}{\text { Cost }}$

$$
\text { (if } \mathrm{PI}>1 \text {, accept the project) (if } \mathrm{PI}<1 \text {, reject the project) }
$$

@ We choose the project the one with the highest Profitability Index

CH-5 Financial Ratio Analysis

- Profitability ratios

1- Gross profit margin $(\%)=\frac{\text { Gross Profit }}{\text { Revenue }} \boldsymbol{x} \mathbf{1 0 0}$
2- Profit margin (\%) $=\frac{\text { Profit Before Tax }}{\text { Revenue }} \boldsymbol{x} \mathbf{1 0 0}$
3- Return on capital employed (\%) $=\frac{\text { Profit Before Tax }}{\text { Capital Employed }} \boldsymbol{x} 100$

Liquidity ratios
1- Current ratio $=\frac{\text { Current assets }}{\text { Current liabilities }}$
2- Acid test ratio (Quick Ratio) $=\frac{\text { Current assets }- \text { Inventories }}{\text { Current liabilities }}$

3- Working Capital = Current Assets - Current Liabilities
4- Capital Employed = Total assets - Current liabilities

