FIN 316 CH-1 compound interest Formulas

- 1- Future value = Present value $X(1 + i)^n$
- 2- Compound interest = Future value Present value OR Present value X [(1 + i)ⁿ-1]
- 3- Present value = Future value $\div (1 + i)^n \implies$ by knowing future value

Present value = Compound Interest $\div [(1 + i)^n - 1] \implies by$ knowing Compound Interest

- 4- Time / Periods (n) = Future value ÷ Present value ⇒ Press log by using calculator
- 5- interest rate (i) = Future value \div Present value \implies Press^x by using calculator

Annual and Partial interest rate		
Annually	i =	
-	n = v	

Compounded Semi Annually	i = ÷ 2	n = × 2
Compounded Quarterly	i = ÷ 4	n = × 4
Compounded Thirdly	i = ÷ 3	n = × 3
Compounded Monthly	i = ÷ 12	n = × 12

(Every 6 Month) (Semi Annually)	i = ÷ 2	n = × 2
(Each Quarterly) (Every 3 Months)	i = ÷ 4	n = × 4
(Each Thirdly) (Every 4 Months)	i = ÷ 3	n = × 3

<u>FIN 316</u> <u>CH-2 - Annuity</u> <u>Formulas</u>

► (Ordinary) (End) Annuities

1- Future value = PMT X $\left[\frac{(1+i)^n - 1}{i}\right] \implies by using calculator$

Future value = PMT X TABLE (FV of Ordinary Annuity)

2- Present value = PMT X $\left[\frac{1-(1+i)^{-n}}{i}\right] \implies by using calculator$

Present value = PMT X TABLE (PV of Ordinary Annuity)

3- PMT = Future value $\div \left[\frac{(1+i)^n - 1}{i}\right]$ PMT = Present value $\div \left[\frac{1 - (1+i)^{-n}}{i}\right]$

► (Due) (beginning) Annuities

1- Future value = PMT X $\left[\frac{(1+i)^n - 1}{i}\right]$ x (1+i) \longrightarrow by using calculator

Future value = **PMT X TABLE** (**FV of Annuity Due**)

2- Present value = PMT X $\left[\frac{1-(1+i)^{-n}}{i}\right]$ x (1+i) \longrightarrow by using calculator

Present value = **PMT X TABLE** (**PV of Annuity Due**)

3- PMT = Future value
$$\div \left[\frac{(1+i)^n - 1}{i}\right] \div (1+i)$$

PMT = Present value $\div \left[\frac{1-(1+i)^{-n}}{i}\right] \div (1+i)$

CH-3 - Capital Budgeting Decision Model 1- <u>Payback period</u>

Payback Period = $\frac{\text{cost}}{\text{Annual cash inflow}}$ (Fixed Cash Inflow)

(Changeable Cash Inflow)

Year	Cash flow	Yet to be	recovered	Payback period
------	-----------	-----------	-----------	----------------

$@{\ensuremath{\mathsf{We}}}$ choose the project $% {\ensuremath{\mathsf{it}}}$ it has the lowest payback period

2- <u>Net Present Value Method</u> Year Cash flow $(1+i)^{-n}$ PV of cash flow

(If, NPV > 0 ... Accepting the project) (if, NPV < 0 ... Rejecting the project) @We choose the project the one with the highest positive net present value

3- Profitability Index $=\frac{NPV + Cost}{Cost}$

(if PI > 1, accept the project) (if PI < 1, reject the project)

@ We choose the project the one with the highest Profitability Index

CH-5 Financial Ratio Analysis

► Profitability ratios

1- Gross profit margin (%) =
$$\frac{Gross Profit}{Revenue} x$$
 100

- 2- Profit margin (%) = $\frac{Profit Before Tax}{Revenue} x 100$
- 3- Return on capital employed (%) = $\frac{Profit Before Tax}{Capital Employed} x 100$

► Liquidity ratios

- 1- Current ratio = $\frac{Current \ assets}{Current \ liabilities}$
- 2- Acid test ratio (Quick Ratio) = $\frac{Current \ assets Inventories}{Current \ liabilities}$
- 3- Working Capital = Current Assets Current Liabilities
- 4- Capital Employed = Total assets Current liabilities